Este kit PhosphoWorks™ es de Resplandor continuo y proporciona un ensayo de luminiscencia rápido, simple y homogéneo para la determinación de la proliferación celular y la citotoxicidad en células de mamíferos.
Descripción
Ensayo de ATP luminométrico PhosphoWorks™
El trifosfato de adenosina (ATP) juega un papel fundamental en la energenia celular, la regulación metabólica y la señalización celular. El ensayo de ATP luminometrico PhosphoWorks™ proporciona un kit de luminiscencia rápido, simple y homogéneo para la determinación de la proliferación celular y la citotoxicidad en células de mamíferos.
El ensayo se puede realizar en un conveniente formato de placa de microtitulación de 96 pocillos y 384 pocillos. La alta sensibilidad de este ensayo permite la detección de ATP en muchos sistemas biológicos, muestras ambientales y alimentos. Este kit PhosphoWorks ATP tiene una señal de luminiscencia estable de hasta 4 horas. Tiene una luminiscencia estable sin necesidad de mezclas ni separaciones, y está formulado para tener un tiempo mínimo de manipulación.
Nombre en Ingles: PhosphoWorks™ Luminometric ATP Assay Kit *Extended Luminescence*
Catalogo | Producto | Presentación |
---|---|---|
21608 | Ensayo de ATP luminométrico PhosphoWorks™ | 10 placas |
21609 | Ensayo de ATP luminométrico PhosphoWorks™ | 1 placa |
Importante: Solo para uso en investigación (RUO).
Plataforma
Lector de Microplacas de Fluorescencia
Placa recomendada | Blanca sólida |
Componentes
Componente A: ATP Monitoring Enzyme | 1 vial |
Componente B: ATP Sensor (Light-sensitive) | 10 viales |
Componente C: Buffer de reacción | 2 viales (50 mL/vial) |
PREPARACION DE SOLUCION DE TRABAJO
- Transfiera todo el vial de 10 ml de buffer de reacción (componente C) al sensor de ATP (componente B) y mezcle bien.
- Agregue 20 µL de Enzima de Monitoreo de ATP (Componente A) en la botella de Componente B+C y mezcle bien para hacer una solución de trabajo de ATP. Nota: Evite la posible contaminación por ATP de fuentes biológicas exógenas.
Para obtener guias sobre la preparación de muestras de células, visite
https://www.aatbio.com/resources/guides/cell-sample-preparation.html
Imagenes
Figura 1. El número de células CHO-K1 se midió con el kit de ensayo de ATP de luminiscencia PhosphoWorks™ en una placa blanca de 96 pocillos utilizando un lector de placas NOVOstar (BMG Labtech). La señal de luminiscencia de las células CHO-K1 hasta 100 células por pocillo se controló durante un máximo de 2 horas (factor Z’ = 0,6). El tiempo integrado fue de 1 segundo.
Figura 2. La respuesta a la dosis de ATP se midió con el kit de ensayo PhosphoWorks Luminescence ATP. Se controlaron las concentraciones de ATP de 10 uM a 0,1 nM durante un máximo de 5 horas a intervalos de 1 segundo.
Productos Relacionados
PhosphoWorks™ Luminometric ATP Assay Kit *Bright Glow* |
PhosphoWorks™ Luminometric ATP Assay Kit *DTT-Free* |
Bibliografía
Coronary Endothelium No-Reflow Injury Is Associated with ROS-Modified Mitochondrial Fission through the JNK-Drp1 Signaling Pathway
Authors: Chen, Yi and Liu, Chen and Zhou, Peng and Li, Jiannan and Zhao, Xiaoxiao and Wang, Ying and Chen, Runzhen and Song, Li and Zhao, Hanjun and Yan, Hongbing
Journal: Oxidative Medicine and Cellular Longevity (2021)
KD025 Shifts Pulmonary Endothelial Cell Bioenergetics and Decreases Baseline Lung Permeability
Authors: Lee, Ji Young and Stevens, Reece P and Kash, Mary and Zhou, Chun and Koloteva, Anna and Renema, Phoibe and Paudel, Sunita S and Stevens, Troy
Journal: American Journal of Respiratory Cell and Molecular Biology (2020)
High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for Primary Hyperoxaluria Type 1
Authors: Wang, Mengqiao and Xu, Miao and Long, Yan and Fargue, Sonia and Southall, Noel and Hu, Xin and McKew, John C and Danpure, Christopher J and Zheng, Wei
Journal: Scientific Reports (2016)
NT1014, a novel biguanide, inhibits ovarian cancer growth in vitro and in vivo
Authors: Zhang, Lu and Han, Jianjun and Jackson, Am and a L , undefined and Clark, Leslie N and Kilgore, Joshua and Guo, Hui and Livingston, Nick and Batchelor, Kenneth and Yin, Yajie and Gilliam, Timothy P and others, undefined
Journal: Journal of Hematology & Oncology (2016): 91
The Different Effects of Atorvastatin and Pravastatin on Cell Death and PARP Activity in Pancreatic NIT-1 Cells
Authors: Chen, Ya-Hui and Chen, Yi-Chun and Liu, Chin-San and Hsieh, Ming-Chia
Journal: Journal of Diabetes Research (2016)
Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway
Authors: Yuan, Lingqin and Sheng, Xiugui and Willson, Adam K and Roque, Dario R and Stine, Jessica E and Guo, Hui and Jones, Hannah M and Zhou, Chunxiao and Bae-Jump, Victoria L
Journal: Endocrine-related cancer (2015): 577–591
BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1α contributes to cardiomyopathy in male rats
Authors: Jiang, Ying and Xia, Wei and Yang, Jie and Zhu, Yingshuang and Chang, Huailong and Liu, Juan and Huo, Wenqian and Xu, Bing and Chen, Xi and Li, Yuanyuan and others, undefined
Journal: Toxicology (2015): 21–31
Loss of histone deacetylase Hdac1 disrupts metabolic processes in intestinal epithelial cells
Authors: Gonneaud, Alexis and Turgeon, Naomie and Boisvert, Frančois-Michel and Boudreau, Frančois and Asselin, Claude
Journal: FEBS letters (2015): 2776–2783
JQ1 suppresses tumor growth through downregulating LDHA in ovarian cancer
Authors: Qiu, Haifeng and Jackson, Am and a L , undefined and Kilgore, Joshua E and Zhong, Yan and Chan, Leo Li-Ying and Gehrig, Paola A and Zhou, Chunxiao and Bae-Jump, Victoria L
Journal: Oncotarget (2015): 6915
A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy
Authors: Pohl, Kerstin and Hayes, Elaine and Keenan, Joanne and Henry, Michael and Meleady, Paula and Molloy, Kevin and Jundi, Bakr and Bergin, David A and McCarthy, Cormac and McElvaney, Oliver J and others, undefined
Journal: Blood (2014): 999–1009
Referencias
Ver todas las 108 referencias: Citation Explorer
Cell-surface-localized ATP detection with immobilized firefly luciferase
Authors: Nakamura M, Mie M, Funabashi H, Yamamoto K, Ando J, Kobatake E.
Journal: Anal Biochem (2006): 61
Ca2+ oscillations stimulate an ATP increase during fertilization of mouse eggs
Authors: Campbell K, Swann K.
Journal: Dev Biol (2006): 225
An efficient method for quantitative determination of cellular ATP synthetic activity
Authors: Hara KY, Mori H.
Journal: J Biomol Screen (2006): 310
Basic evaluation for new antimicrobial susceptibility testing of Mycobacterium leprae by bioluminescence assay (ATP method)
Authors: Yamazaki T, Gidoh M, Matsuoka M.
Journal: Nihon Hansenbyo Gakkai Zasshi (2006): 227
Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase
Authors: Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y.
Journal: Cell Death Differ (2005): 1390
Do rat cardiac myocytes release ATP on contraction
Authors: Godecke S, Stumpe T, Schiller H, Schnittler HJ, Schrader J.
Journal: Am J Physiol Cell Physiol (2005): C609
ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon
Authors: Ukuku DO, Sapers GM, Fett WF.
Journal: J Food Prot (2005): 2427
Determination of ATP impurity in adenine dinucleotides
Authors: Pojoga LH, Haghiac ML, Moose JE, Hilderman RH.
Journal: Nucleosides Nucleotides Nucleic Acids (2004): 581
Identification of kinase inhibitors by an ATP depletion method
Authors: Singh P, Harden BJ, Lillywhite BJ, Broad PM.
Journal: Assay Drug Dev Technol (2004): 161
ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell
Authors: Satoh T, Kato J, Takiguchi N, Ohtake H, Kuroda A.
Journal: Biosci Biotechnol Biochem (2004): 1216