Este indicador mitocondrial es útil para una variedad de estudios, incluida la adhesión celular, la quimiotaxis, la resistencia a múltiples fármacos, la viabilidad celular, la apoptosis y la citotoxicidad.
Descripción
Las mitocondrias son orgánulos encerrados en una membrana que se encuentran en la mayoría de las células eucariotas. Las mitocondrias generan la mayor parte del suministro celular de ATP. Además de suministrar energía celular, las mitocondrias participan en una serie de otros procesos, como la señalización, la diferenciación celular, la muerte celular, así como el control del ciclo celular y el crecimiento celular. Las mitocondrias se han implicado en varias enfermedades humanas, incluidos los trastornos mitocondriales y la disfunción cardíaca, y pueden desempeñar un papel en el proceso de envejecimiento.
Mitolite™ NIR FX690 está diseñado para marcar mitocondrias en células vivas con fluorescencia infrarroja cercana. Se acumula selectivamente en las mitocondrias probablemente a través del gradiente de potencial de membrana mitocondrial. Es una opción ideal para obtener imágenes de células vivas y tejidos donde el fondo bajo y la alta relación señal-ruido son críticos. Este indicador mitocondrial fluorescente se retiene en las mitocondrias durante mucho tiempo ya que lleva un grupo de retención celular. Esta característica clave aumenta significativamente la eficacia de la tinción. Es útil para una variedad de estudios, incluida la adhesión celular, la quimiotaxis, la resistencia a múltiples fármacos, la viabilidad celular, la apoptosis y la citotoxicidad.
Catalogo | Producto | Presentación |
---|---|---|
AAT-22690 | MitoLite™ NIR FX690 | 500 pruebas |
Importante: Solo para uso en investigación (RUO). Almacenamiento: Congelar (< -15 °C); Minimizar la exposición a la luz.
Espectro
Abrir en Advanced Spectrum Viewer
Propiedades espectrales
Exitación | 658 |
Emisión | 691 |
Imagen
Figura 1. Imágenes de fluorescencia de células HeLa teñidas con MitoLite™ NIR FX690 utilizando un microscopio de fluorescencia con un juego de filtros Cy5 (rojo). Después de la fijación, las células se marcaron con tinte de actina F iFluor® 488-Phalloidin (Catálogo 23115, verde) y se contrastaron con Nuclear Blue™ DCS1 (Catálogo 17548, azul).
Productos Relacionados
MitoLite™ Blue FX490 |
MitoLite™ Green EX488 |
MitoLite™ Orange FX570 |
MitoLite™ Red FX600 |
MitoLite™ Orange EX405 |
MitoLite™ NIR FX690 |
MitoLite™ Green FM |
MitoLite™ Red CMXRos |
Bibliografía
Co-delivery of VP-16 and Bcl-2-targeted antisense on PEG-grafted oMWCNTs for synergistic in vitro anti-cancer effects in non-small and small cell lung cancer
Authors: Heger, Zbynek and Polanska, Hana and Krizkova, Sona and Balvan, Jan and Raudenska, Martina and Dostalova, Simona and Moulick, Amitava and Masarik, Michal and Adam, Vojtech
Journal: Colloids and Surfaces B: Biointerfaces (2017): 131–140
Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin
Authors: Lv, Xin and Song, Dong-mei and Niu, Ying-hao and Wang, Bao-shan
Journal: Apoptosis (2016): 489–501
Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble bis (arylidene) cycloalkanone photosensitizers
Authors: Zou, Qianli and Zhao, Hongyou and Zhao, Yuxia and Fang, Yanyan and Chen, Defu and Ren, Jie and Wang, Xiaopu and Wang, Ying and Gu, Ying and Wu, Feipeng
Journal: Journal of medicinal chemistry (2015): 7949–7958
Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes
Authors: Kato, Hisashi and Tanaka, Goki and Masuda, Shinya and Ogasawara, Junetsu and Sakurai, Takuya and Kizaki, Takako and Ohno, Hideki and Izawa, Tetsuya
Journal: Journal of Pineal Research (2015): 267–275
Referencias
Ver todas las 70 referencias: Citation Explorer
Quantification of carbonylated proteins in rat skeletal muscle mitochondria using capillary sieving electrophoresis with laser-induced fluorescence detection
Authors: Feng J, Arriaga EA.
Journal: Electrophoresis (2008): 475
Calcium, mitochondria and apoptosis studied by fluorescence measurements
Authors: Roy SS, Hajnoczky G.
Journal: Methods (2008): 213
Fluorescence imaging of mitochondria in yeast
Authors: Swayne TC, Gay AC, Pon LA.
Journal: Methods Mol Biol (2007): 433
A fluorescence assay for peptide translocation into mitochondria
Authors: Martinez-Caballero S, Peixoto PM, Kinnally KW, Campo ML.
Journal: Anal Biochem (2007): 76
Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection
Authors: Duffy CF, MacCraith B, Diamond D, O’Kennedy R, Arriaga EA.
Journal: Lab Chip (2006): 1007
Discrimination of depolarized from polarized mitochondria by confocal fluorescence resonance energy transfer
Authors: Elmore SP, Nishimura Y, Qian T, Herman B, Lemasters JJ.
Journal: Arch Biochem Biophys (2004): 145
A fluorescence-based technique for screening compounds that protect against damage to brain mitochondria
Authors: Kristian T, Fiskum G.
Journal: Brain Res Brain Res Protoc (2004): 176
Determination of the cardiolipin content of individual mitochondria by capillary electrophoresis with laser-induced fluorescence detection
Authors: Fuller KM, Duffy CF, Arriaga EA.
Journal: Electrophoresis (2002): 1571
Fluorescence imaging of metabolic responses in single mitochondria
Authors: Nakayama S, Sakuyama T, Mitaku S, Ohta Y.
Journal: Biochem Biophys Res Commun (2002): 23
Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy
Authors: Dedov VN, Cox GC, Roufogalis BD.
Journal: Micron (2001): 653
Application notes (en Ingles)
A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
Abbreviation of Common Chemical Compounds Related to Peptides
Annexin V
Bright Tide Fluor™-Based Fluorescent Peptides and Their Applications In Drug Discovery and Disease Diagnosis
Calcein