Ensayo de actividad de ROS total intracelular fluorimétrico Cell Meter™

ensayo de actividad de ROS

Este kit de Ensayo de actividad de ROS total intracelular fluorimétrico Cell Meter™ eta optimizado para citómetria de flujo y utiliza nuestro exclusivo sensor Amplite® ROS Green para cuantificar ROS en células vivas y es permeable a las células.

Descripción

Kit de ensayo de actividad de ROS total intracelular fluorimétrico Cell Meter™ optimizado para Citómetria de Flujo

Las especies reactivas de oxígeno (ROS) son subproductos naturales del metabolismo normal del oxígeno y juegan un papel importante en la señalización celular. Sin embargo, durante los estados relacionados con el estrés oxidativo, los niveles de ROS pueden aumentar drásticamente.

La acumulación de ROS da como resultado un daño significativo a las estructuras celulares. El papel del estrés oxidativo en las enfermedades cardiovasculares, la diabetes, la osteoporosis, los accidentes cerebrovasculares, las enfermedades inflamatorias, una serie de enfermedades neurodegenerativas y el cáncer ha sido bien establecido. La medición de ROS ayudará a determinar cómo el estrés oxidativo modula diversas vías intracelulares.

El kit de ensayo de ROS fluorimétrico Cell Meter™ utiliza nuestro exclusivo sensor Amplite® ROS Green para cuantificar ROS en células vivas. Amplite® ROS Green es permeable a las células. Genera la fluorescencia verde cuando reacciona con ROS. El kit de ensayo de ROS fluorimétrico Cell Meter™ proporciona un ensayo fluorimétrico sensible de un solo paso para detectar ROS intracelular en células vivas con una hora de incubación.

Este kit está optimizado para aplicaciones de citometría de flujo, su señal se puede detectar con Ex/Em = 490/520 nm (canal FL1).

Nombre en Ingles: Cell Meter™ Fluorimetric Intracellular Total ROS Activity Assay Kit*Optimized for Flow Cytometry*

CatalogoProductoPresentación
AAT-22904Ensayo de actividad de ROS total intracelular fluorimétrico Cell Meter™ para citómetria de flujo100 ensayos

pdfSDSpdfProtocol

Importante: Solo para uso en investigación (RUO).

Plataforma

Citómetro de Flujo

ExcitaciónLaser 488 nm
EmisiónFiltro 530/30 nm
Especificaciones InstrumentoCanal FITC

Componentes

Componente A: ROS Brite™ Green1 vial
Componente B: Buffer de ensayo1 botella (10ml)
Componente C: DMSO1 vial (200 µL)

Preparación de Solución de Stock

A menos que se indique lo contrario, todas las soluciones madre no utilizadas deben dividirse en alícuotas de un solo uso y almacenarse a -20 °C después de la preparación. Evite los ciclos repetidos de congelación y descongelación.

Solución madre Amplite™ ROS Green (500X):
Agregue 100 µL de DMSO (Componente C) en el vial de Amplite™ ROS Green (Componente A) y mezcle bien para preparar una solución madre de Amplite™ ROS Green 500X. Proteger de la luz. Nota: Para el almacenamiento, selle los tubos herméticamente.


Preparación de células

Para guias sobre la preparación de muestras de células, visite https://www.aatbio.com/resources/guides/cell-sample-preparation.html

Imagenes

Figura 1. Detección de ROS intracelular en células Jurkat tras el tratamiento con TBHP utilizando el kit de ensayo de actividad de ROS total intracelular fluorimétrico Cell Meter™. Las células se incubaron con Amplite® ROS Green a 37 °C durante 1 hora. A continuación, las células se trataron sin (verde) o con (rojo) TBHP 100 µM a 37 °C durante 30 minutos. La señal de fluorescencia se controló en el canal FITC utilizando un citómetro de flujo (Acea NovoCyte 3000).

Formatos Alternativos

Cell Meter™ Fluorimetric Intracellular Total ROS Activity Assay Kit*Green Fluorescence*
Cell Meter™ Fluorimetric Intracellular Total ROS Activity Assay Kit*Red Fluorescence*
Cell Meter™ Fluorimetric Intracellular Total ROS Activity Assay Kit*Orange Fluorescence*
Cell Meter™ Fluorimetric Intracellular Total ROS Activity Assay Kit*Deep Red Fluorescence*

Productos Relacionados

Cell Meter™ Intracellular Fluorimetric Hydrogen Peroxide Assay Kit *Green Fluorescence*
Cell Meter™ Intracellular Fluorimetric Hydrogen Peroxide Assay Kit *Blue Fluorescence*
Cell Meter™ Intracellular Fluorimetric Hydrogen Peroxide Assay Kit *Blue Fluorescence Optimized for Flow Cytometry*
Cell Meter™ Intracellular Fluorimetric Hydrogen Peroxide Assay Kit *Green Fluorescence Optimized for Flow Cytometry*
Cell Meter™ Mitochondrial Hydroxyl Radical Detection Kit *Red Fluorescence*
Cell Meter™ Fluorimetric Mitochondrial Superoxide Activity Assay Kit *Green Fluorescence*
Cell Meter™ Fluorimetric Intracellular Peroxynitrite Assay Kit *Green Fluorescence*
Cell Meter™ Fluorimetric Intracellular Peroxynitrite Assay Kit *Optimized for Flow Cytometry*
Cell Meter™ Fluorimetric Intracellular Nitric Oxide (NO) Activity Assay Kit *Orange Fluorescence Optimized for Microplate Reader*
Cell Meter™ Fluorimetric Intracellular Nitric Oxide (NO) Activity Assay Kit *Orange Fluorescence Optimized for Flow Cytometry*

Bibliografía

Ver todas las 17 bibliografias: Citation Explorer

Anti-Inflammatory Effects of $\beta$-Cryptoxanthin on 5-Fluorouracil-Induced Cytokine Expression in Human Oral Mucosal Keratinocytes
Authors: Yamanobe, Hironaka and Yamamoto, Kenta and Kishimoto, Saki and Nakai, Kei and Oseko, Fumishige and Yamamoto, Toshiro and Mazda, Osam and Kanamura, Narisato
Journal: Molecules (2023): 2935

Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension
Authors: Li, Xiaoming and Zhang, Xiang and Hou, Xiaozhi and Bing, Xin and Zhu, Fangyuan and Wu, Xinhao and Guo, Na and Zhao, Hui and Xu, Fenglei and Xia, Ming
Journal: Apoptosis (2022): 1–15

ONC206 has anti-tumorigenic effects in human ovarian cancer cells and in a transgenic mouse model of high-grade serous ovarian cancer
Authors: Tucker, Katherine and Yin, Yajie and Staley, Stuart-Allison and Zhao, Ziyi and Fang, Ziwei and Fan, Yali and Zhang, Xin and Suo, Hongyan and Sun, Wenchuan and Prabhu, Varun Vijay and others,
Journal: American Journal of Cancer Research (2022): 521

Reversal of multidrug resistance by Fissistigma latifolium–derived chalconoid 2-hydroxy-4, 5, 6-trimethoxydihydrochalcone in cancer cell lines overexpressing human P-glycoprotein
Authors: Teng, Yu-Ning and Hung, Chin-Chuan and Kao, Pei-Heng and Chang, Ying-Tzu and Lan, Yu-Hsuan
Journal: Biomedicine \& Pharmacotherapy (2022): 113832

The Abnormal Proliferation of Hepatocytes is Associated with MC-LR and C-Terminal Truncated HBX Synergistic Disturbance of the Redox Balance
Authors: Cai, Dong-Mei and Mei, Fan-Biao and Zhang, Chao-Jun and An, San-Chun and Lv, Rui-Bo and Ren, Guan-Hua and Xiao, Chan-Chan and Long, Long and Huang, Tian-Ren and Deng, Wei
Journal: Journal of Hepatocellular Carcinoma (2022): 1229–1246

Ginsenoside Rb1 attenuates high glucose-induced oxidative injury via the NAD-PARP-SIRT axis in rat retinal capillary endothelial cells
Authors: Fan, Chunlan and Ma, Qing and Xu, Meng and Qiao, Yuan and Zhang, Yi and Li, Pin and Bi, Yucong and Tang, Minke
Journal: International journal of molecular sciences (2019): 4936

Danazol mediates collateral sensitivity via STAT3/Myc related pathway in multidrug-resistant cancer cells
Authors: Chang, Ying-Tzu and Teng, Yu-Ning and Lin, Kun-I and Wang, Charles CN and Morris-Natschke, Susan L and Lee, Kuo-Hsiung and Hung, Chin-Chuan
Journal: Scientific reports (2019): 1–11

Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state
Authors: Fan, Chunlan and Qiao, Yuan and Tang, Minke
Journal: Drug design, development and therapy (2017): 3343

Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state
Authors: Fan, Chunlan and Qiao, Yuan and Tang, Minke
Journal: Drug Design, Development and Therapy (2017): 3343

Anti-proliferation effect of blue light-emitting diodes against antibiotic-resistant Helicobacter pylori
Authors: Ma, Jianwei and Hiratsuka, Takahiro and Etoh, Tsuyoshi and Akada, Junko and Fujishima, Hajime and Shiraishi, Norio and Yamaoka, Yoshio and Inomata, Masafumi
Journal: Journal of Gastroenterology and Hepatology (2017)

Referencias

Ver todas las 48 referencias: Citation Explorer

Automatic flow injection based methodologies for determination of scavenging capacity against biologically relevant reactive species of oxygen and nitrogen
Authors: Magalhaes LM, Lucio M, Segundo MA, Reis S, Lima JL.
Journal: Talanta (2009): 1219

Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive oxygen species
Authors: Amaral S, Oliveira PJ, Ramalho-Santos J.
Journal: Curr Diabetes Rev (2008): 46

Virion disruption by ozone-mediated reactive oxygen species
Authors: Murray BK, Ohmine S, Tomer DP, Jensen KJ, Johnson FB, Kirsi JJ, Robison RA, O’Neill KL.
Journal: J Virol Methods (2008): 74

The role of mitochondria in reactive oxygen species metabolism and signaling
Authors: Starkov AA., undefined
Journal: Ann N Y Acad Sci (2008): 37

Sensitive determination of reactive oxygen species by chemiluminescence methods and their application to biological samples and health foods
Authors: Wada M., undefined
Journal: Yakugaku Zasshi (2008): 1031

Reactive oxygen species and yeast apoptosis
Authors: Perrone GG, Tan SX, Dawes IW.
Journal: Biochim Biophys Acta (2008): 1354

Measurement of reactive oxygen species in cells and mitochondria
Authors: Armstrong JS, Whiteman M.
Journal: Methods Cell Biol (2007): 355

Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation
Authors: Zhang W, Wang M, Xie HY, Zhou L, Meng XQ, Shi J, Zheng S.
Journal: Transplant Proc (2007): 1332

Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors
Authors: Gorlach A, Kietzmann T.
Journal: Methods Enzymol (2007): 421

Reactive oxygen species and superoxide dismutases: role in joint diseases
Authors: Afonso V, Champy R, Mitrovic D, Collin P, Lomri A.
Journal: Joint Bone Spine (2007): 324

Application Notes

A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
A Comparison of Fluorescent Red Calcium Indicators for Detecting Intracellular Calcium Mobilization in CHO Cells
A Meta-Analysis of Common Calcium Indicators
A New Red Fluorescent & Robust Screen Quest™ Rhod-4™ Ca2+Indicator for Screening GPCR & Ca2+ Channel Targets

FAQ

ROS Detection: ROS probe selection guide.
Are NADH and ROS related?
Are there any alternatives for ethidium bromide in agarose gels?
Are there any alternatives to Cy5?
Are there any calcium indicators that don’t require probenecid (PBC)?

AssayWire

Intracellular Total ROS Activity Assays
Total ROS Detection
Selecting the right ROS probe
Intracellular Nitric Oxide (NO) Assays
Multicolor Intracellular Calcium Detection Probes